Obtaining small Kinetic Mixing

Ruben Küspert

work in progress with A.Hebecker & J. Jaeckel

String Phenomenology 2022

INTERNATIONAL MAX PLANCK RESEARCH SCHOOL

FOR PRECISION TESTS OF FUNDAMENTIAL SYMMETRIES

< A 1

4 2 5 4 2 5

Motivation - What is Kinetic Mixing?

• Standard story: non-diagonal kinetic term for multiple U(1) gauge bosons [Okun, 1982, Holdom, 1986]

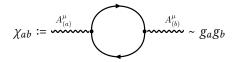
$$\mathcal{L} \supset -\frac{\chi_{ab}}{2} F^{\mu\nu}_{(a)} F^{(b)}_{\mu\nu}$$

< □ > < □ > < □ > < □ > < □ > < □ >

Motivation - What is Kinetic Mixing?

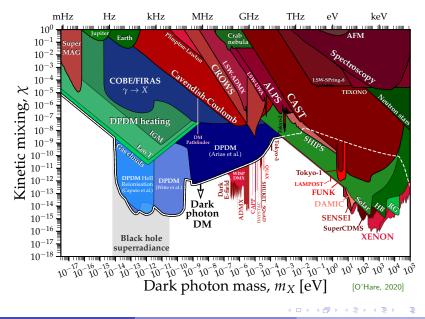
- Standard story: non-diagonal kinetic term for multiple U(1) gauge bosons [Okun, 1982, Holdom, 1986]

$$\mathcal{L} \supset -\frac{\chi_{ab}}{2} F^{\mu\nu}_{(a)} F^{(b)}_{\mu\nu}$$


• KM can be used to couple e.g. the visible photon $A^{\mu}_{(a)}$ to a hidden photon $A^{\mu}_{(b)}$, thus creating a portal to a hidden sector

Motivation - What is Kinetic Mixing?

• Standard story: non-diagonal kinetic term for multiple U(1) gauge bosons [Okun, 1982, Holdom, 1986]


$$\mathcal{L} \supset -\frac{\chi_{ab}}{2} F^{\mu\nu}_{(a)} F^{(b)}_{\mu\nu}$$

- KM can be used to couple e.g. the visible photon $A^{\mu}_{(a)}$ to a hidden photon $A^{\mu}_{(b)}$, thus creating a portal to a hidden sector
- χ_{ab} can be generated by a heavy particle running in a loop

• KM observability: \frown charged states $j^{\mu}_{(a)}$ and $j^{\mu}_{(b)}$ \bigcirc mass m_X for hidden photon $A^{\mu}_{(b)}$

Constraints on Kinetic Mixing

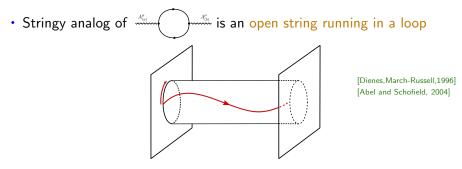
Outline

- 1. Kinetic Mixing in String Theory
- 2. Bounds on Kinetic Mixing
- 3. Obtaining small Kinetic Mixing

э

(日) (四) (日) (日) (日)

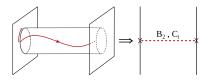
Outline


1. Kinetic Mixing in String Theory

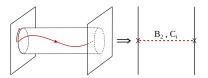
- 2. Bounds on Kinetic Mixing
- 3. Obtaining small Kinetic Mixing

э

A D N A B N A B N A B N

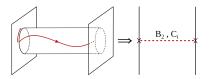

Kinetic Mixing in String Theory

- · Famously dual to closed string, exchanged between the D-branes
- Direct computation of the in relevant scenarios is very tricky


Extracting Kinetic Mixing from EFT

 Restrict to 10D EFT and compute closed string exchange diagrams of mediating fields

Extracting Kinetic Mixing from EFT


 Restrict to 10D EFT and compute closed string exchange diagrams of mediating fields

• KM term becomes apparent only from 4D perspective

Extracting Kinetic Mixing from EFT

 Restrict to 10D EFT and compute closed string exchange diagrams of mediating fields

- KM term becomes apparent only from 4D perspective
- Compactify & integrate out KK modes of mediating fields [Abel et al., 2008] [Goodsell et al., 2009]

$$\begin{array}{c|c} & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ &$$

Outline

1. Kinetic Mixing in String Theory

2. Bounds on Kinetic Mixing

3. Obtaining small Kinetic Mixing

э

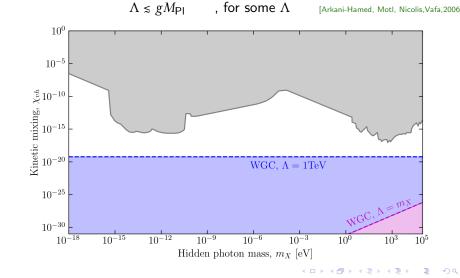
A D N A B N A B N A B N

• Need $\chi \sim 10^{-16} - 10^{-5}$, depending on hidden photon mass

3

イロト イポト イヨト イヨト

- Need $\chi \sim 10^{-16}$ $10^{-5},$ depending on hidden photon mass
- Easy way out: Arrange for small hidden gauge coupling g_b


4 AR N 4 E N 4 E N

- Need $\chi \sim 10^{-16}$ $10^{-5},$ depending on hidden photon mass
- Easy way out: Arrange for small hidden gauge coupling g_b
- Problematic because weak gravity conjecture (WGC) implies:

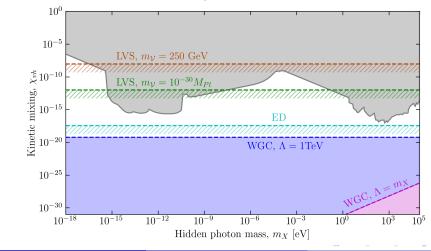
 $\Lambda \lesssim g M_{\rm Pl}$, for some Λ [Arkani-Hamed, Motl, Nicolis, Vafa, 2006]

4 AR N 4 E N 4 E N

Problematic because weak gravity conjecture (WGC) implies:

[Arkani-Hamed, Motl, Nicolis, Vafa, 2006]

• The cutoff for the 4D theory is given by $\Lambda = M_{KK} \sim 1/R$ and $g_h^{-2} \sim \operatorname{vol}(\Sigma_{p-3}) \sim R^{p-3}$ [Benakli et al., 2020, Obied and Parikh, 2021] [Hannestad and Raffelt, 2003, Sirunyan et al., 2018] 10^{0} 10^{-5} Kinetic mixing, \varkappa_{-10} , ω_{-10} , ED WGC, $\Lambda = 1 \text{TeV}$ 10^{-25} WGC, $\Lambda = mx$ 10^{-30} 10^{-12} 10^{-9} 10^{-6} 10^{-3} 10^{-18} 10^{-15} 10^{0} 10^{3} 10^{5}


Hidden photon mass, m_X [eV]

< 1[™] >

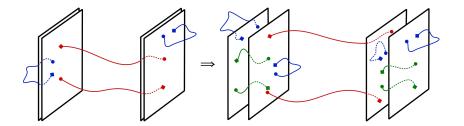
Bounds on Kinetic Mixing - III

• In LVS, the mass of volume modulus is bounded to evade fifth forces constraints [Kapner et al., 2007]

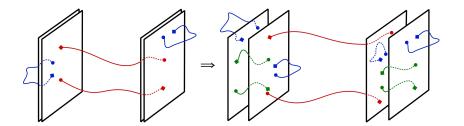
$$n_{\mathcal{V}} \sim \frac{g_{s}^{2} W_{0}}{\mathcal{V}^{3/2}} M_{\mathsf{PI}} \gtrsim 10^{-30} M_{\mathsf{PI}}$$

Outline

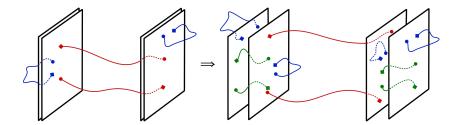
- 1. Kinetic Mixing in String Theory
- 2. Bounds on Kinetic Mixing
- 3. Obtaining small Kinetic Mixing


э

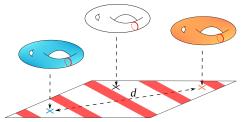
A D N A B N A B N A B N


- Remember: need charged states in each sector to observe KM
- Charged states \Leftrightarrow strings stretched between two different branes

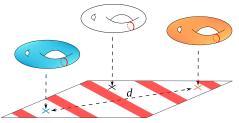
・ 何 ト ・ ヨ ト ・ ヨ ト


- Remember: need charged states in each sector to observe KM
- Charged states \Leftrightarrow strings stretched between two different branes
- \curvearrowright use two separated brane stacks \Rightarrow get charged states

- Remember: need charged states in each sector to observe KM
- Charged states \Leftrightarrow strings stretched between two different branes
- \curvearrowright use two separated brane stacks \Rightarrow get charged states
- \bigcirc separate branes in each stack to break e.g. $U(2) \rightarrow U(1) \times U(1)$

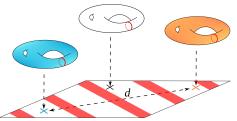


- Remember: need charged states in each sector to observe KM
- Charged states \Leftrightarrow strings stretched between two different branes
- \curvearrowright use two separated brane stacks \Rightarrow get charged states
- \bigcirc separate branes in each stack to break e.g. $U(2) \rightarrow U(1) \times U(1)$
- \Rightarrow extra suppression due to symmetry breaking $\sim \frac{\chi_{ab}}{g_a g_b} \sim \left(\frac{\Lambda_{SB}}{M_s}\right)^2$



• Idea: separate brane stacks as far as possible \curvearrowright sectors should only weakly interact

- Idea: separate brane stacks as far as possible \curvearrowright sectors should only weakly interact
- · Get exponential suppression using fibred geometry



- Idea: separate brane stacks as far as possible \curvearrowright sectors should only weakly interact
- Get exponential suppression using fibred geometry

- For $l_F < l_B$, one can e.g. compactify $10D \rightarrow 6D \rightarrow 4D$
- In 6D we have KK states with $m \sim 1/l_F$

- Idea: separate brane stacks as far as possible \curvearrowright sectors should only weakly interact
- Get exponential suppression using fibred geometry

- For $l_F < l_B$, one can e.g. compactify $10D \rightarrow 6D \rightarrow 4D$
- In 6D we have KK states with $m \sim 1/l_F$
- Heavy KK modes propagate over long distance in the base

$$\Rightarrow \chi \sim \exp\left(-\frac{l_B}{l_F}\right)$$

• focus on D3/D7 stacks: D3s \frown symmetry breaking via separation

D7s \curvearrowright symmetry breaking via gauge flux

[Beasley, Heckman, Vafa, 2008] [Donagi, Wijnholt, 2008] [Blumenhagen, Grimm, Weigand, 2008] [Blumenhagen, Conlon, Krippendorf, Moster, Quevedo, 2009] [Goodsell, Jaeckel, Redondo, Ringwald, 2009]

< □ > < 同 > < 三 > < 三 >

- focus on D3/D7 stacks: D3s
 → symmetry breaking via separation
 D7s
 → symmetry breaking via gauge flux
 [Beasley, Heckman, Vafa, 2008] [Donagi, Wijnholt, 2008]
 [Blumenhagen, Grimm, Weigand, 2008]
 [Blumenhagen, Gonlon, Krippendorf, Moster, Quevedo, 2009]
 [Goodsell, Jaeckel, Redondo, Ringwald, 2009]
 [Goodsell, Jaeckel, Redondo, Ringwald, 2009]
 [Data Structure]
 [Data Structure]
- Mediation due to B_2 & C_2 (D3 / D7) and C_4 (D7)
- O3/O7 orientifolding projects out only B_2 & C_2 zero mode \curvearrowright mediation due to C_4 not exponentially suppressed

< □ > < 同 > < 三 > < 三 >

- focus on D3/D7 stacks: D3s
 → symmetry breaking via separation
 D7s
 → symmetry breaking via gauge flux
 [Beasley, Heckman, Vafa, 2008] [Donagi, Wijnholt, 2008]
 [Blumenhagen, Gonlon, Krippendorf, Moster, Quevedo, 2009]
 [Goodsell, Jaeckel, Redondo, Ringwald, 2009]
- Mediation due to B_2 & C_2 (D3 / D7) and C_4 (D7)
- O3/O7 orientifolding projects out only B_2 & C_2 zero mode \curvearrowright mediation due to C_4 not exponentially suppressed
- Mixing between D3 & D3 / D3 & D7 branes favoured

< □ > < 同 > < 三 > < 三 >

- focus on D3/D7 stacks: D3s
 → symmetry breaking via separation
 D7s
 → symmetry breaking via gauge flux
 [Beasley, Heckman, Vafa, 2008] [Donagi, Wijnholt, 2008]
 [Blumenhagen, Gonlon, Krippendorf, Moster, Quevedo, 2009]
 [Goodsell, Jaeckel, Redondo, Ringwald, 2009]
- Mediation due to B_2 & C_2 (D3 / D7) and C_4 (D7)
- O3/O7 orientifolding projects out only B_2 & C_2 zero mode \curvearrowright mediation due to C_4 not exponentially suppressed
- Mixing between D3 & D3 / D3 & D7 branes favoured
- Caveat:

lower dim. SUGRA contains vector or 2-form in graviton multiplet \curvearrowright only powerlaw suppressed KM due to massless mediation

< □ > < □ > < □ > < □ > < □ > < □ >

Summary

- Small gauge couplings disfavored
- Phenomenologically interesting setups should involve brane stacks
- · Sequestring provides other ways to generate small KM
- Exponential suppression requires SUSY breaking

Summary

- Small gauge couplings disfavored
- Phenomenologically interesting setups should involve brane stacks
- · Sequestring provides other ways to generate small KM
- Exponential suppression requires SUSY breaking

Thank you!

Extracting Kinetic Mixing from EFT - Example

Take two D3-branes filling 4D spacetime \frown points in 6D internal dim. Mediating fields follow from action:

$$S_{\text{DBI}}^{(i)} = -T_3 \int_{\mathcal{M}_{1,3}} d^4 x e^{-\Phi} \sqrt{-\det G} \left[1 + \frac{1}{4} \left(F_{\mu\nu}^{(i)} F_{(i)}^{\mu\nu} + 2F_{\mu\nu}^{(i)} B^{\mu\nu} + B_{\mu\nu} B^{\mu\nu} \right) \right]$$

$$S_{\text{CS}}^{(i)} = \mu_3 \int_{\mathcal{M}_{1,3}} C_4 + \left(\frac{F_2^{(i)}}{2} + B_2 \right) \wedge C_2$$

< □ > < □ > < □ > < □ > < □ > < □ >

Extracting Kinetic Mixing from EFT - Example

$$S_{\text{DBI}}^{(i)} = -T_3 \int_{\mathcal{M}_{1,3}} d^4 x e^{-\Phi} \sqrt{-\det G} \left[1 + \frac{1}{4} \left(F_{\mu\nu}^{(i)} F_{(i)}^{\mu\nu} + 2F_{\mu\nu}^{(i)} B^{\mu\nu} + B_{\mu\nu} B^{\mu\nu} \right) \right]$$

$$S_{\text{CS}}^{(i)} = \mu_3 \int_{\mathcal{M}_{1,3}} C_4 + \left(F_2^{(i)} + B_2 \right) \wedge C_2$$

To lowest order there are two exchange diagrams:

() < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < ()